National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Planar antennas with special superstrates
Zdráhal, Roman ; Oliva, Lukáš (referee) ; Horák, Jiří (advisor)
This diploma thesis deals with the modeling of planar antennas with special superstrates in the CST Microwave Studio. Attention is given to the electromagnetic bandgap (EBG) substrates. Firstly, the working principle of these special substrates and generally physical phenomena accompanying electromagnetic waves propagation in a periodic medium are analyzed. By modeling of basic EBG structures in CST their dispersion diagrams were obtained and afterwards compared to one another. The object of the second part of this thesis was modeling of a chosen antenna in CST. An Antenna placed first on the conventional and then on the EBG substrate - in both cases with special superstrates - is analyzed and compared to each other. In the third part of this thesis, the particle swarm optimization (PSO) technique was implemented in CST (VBA language), and was applied to the original design of the chosen antenna. In the final part of this thesis, the optimized antenna was modeled and analyzed in ANSOFT HFSS, and the results from both simulation programs are compared to each other.
Planar antennas with special superstrates
Zdráhal, Roman ; Oliva, Lukáš (referee) ; Horák, Jiří (advisor)
This diploma thesis deals with the modeling of planar antennas with special superstrates in the CST Microwave Studio. Attention is given to the electromagnetic bandgap (EBG) substrates. Firstly, the working principle of these special substrates and generally physical phenomena accompanying electromagnetic waves propagation in a periodic medium are analyzed. By modeling of basic EBG structures in CST their dispersion diagrams were obtained and afterwards compared to one another. The object of the second part of this thesis was modeling of a chosen antenna in CST. An Antenna placed first on the conventional and then on the EBG substrate - in both cases with special superstrates - is analyzed and compared to each other. In the third part of this thesis, the particle swarm optimization (PSO) technique was implemented in CST (VBA language), and was applied to the original design of the chosen antenna. In the final part of this thesis, the optimized antenna was modeled and analyzed in ANSOFT HFSS, and the results from both simulation programs are compared to each other.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.